Learning to rank

Results: 420



#Item
81Document retrieval / Relevance / Query expansion / Search engine indexing / Query language / Cross-language information retrieval / Relevance feedback / Learning to rank / Information science / Information retrieval / Text Retrieval Conference

Ad hoc, Cross-language and Spoken Document Information Retrieval at IBM Martin Franz, J. Scott McCarley, R. Todd Ward IBM T.J. Watson Research Center P.O. Box 218 Yorktown Heights, NY 10598

Add to Reading List

Source URL: trec.nist.gov

Language: English
82Imaging / Vision / Digital photography / Graphic design / Image editing / Segmentation / Color histogram / Picasa / Feature / Image processing / Computer vision / Computer graphics

A Learning-to-Rank Approach for Image Color Enhancement Jianzhou Yan1∗ Stephen Lin2 1

Add to Reading List

Source URL: research.microsoft.com

Language: English - Date: 2014-04-14 03:27:42
83Learning to rank / Relevance / Text Retrieval Conference / Query expansion / Precision and recall / Discounted cumulative gain / Document retrieval / Google Search / Search engine / Information science / Information retrieval / Relevance feedback

Helioid at TREC-Legal 2011: Learning to Rank from Relevance Feedback for e-Discovery Peter Lubell-Doughtie and Kenneth Hamilton Helioid Inc., New York, NY, USA {peter,kenneth}@helioid.com

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2012-02-03 09:41:35
84Learning to rank / Text Retrieval Conference / Relevance / Document retrieval / Precision and recall / Discounted cumulative gain / Relevance feedback / Information science / Information retrieval / Science

UCD SIFT in the TREC 2011 Web Track David Leonard, Doychin Doychev, David Lillis, Fergus Toolan, Rem W. Collier, and John Dunnion School of Computer Science and Informatics University College Dublin, Ireland {david.leona

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2012-02-03 09:41:33
85Learning to rank / Precision and recall / Relevance / IR evaluation / Sampling / Automatic summarization / Ranking function / Information science / Information retrieval / Science

Inf Retrieval DOIs10791preprint) The whens and hows of learning to rank for web search Craig Macdonald · Rodrygo L.T. Santos ·

Add to Reading List

Source URL: www.dcs.gla.ac.uk

Language: English - Date: 2012-08-21 14:57:59
86Relevance feedback / Twitter / Query expansion / Query likelihood model / Language model / Learning to rank / Document classification / Stemming / Information science / Information retrieval / Science

Author Model and Negative Feedback Methods on TREC 2011 Microblog Track Rui Li1,2 , Bingjie Wei1,2 , Kai Lu1,2 , Bin Wang1 1 Institute of Computing Technology, Chinese Academy of Sciences Beijing, China, 100190

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2012-02-03 09:41:30
87Artificial intelligence / Readability / Flesch–Kincaid readability test / SMOG / Automatic summarization / Learning to rank / Flesch / Abstract / Human-readable medium / Readability tests / Science / Information science

Predicting the Readability of Short Web Summaries Tapas Kanungo David Orr

Add to Reading List

Source URL: www.wsdm2009.org

Language: English - Date: 2009-04-14 09:42:11
88Point and click / Ranking SVM / Web search query / DOM events / Information science / Information retrieval / Learning to rank

Efficient Multiple-Click Models in Web Search ∗ Fan Guo Carnegie Mellon University

Add to Reading List

Source URL: www.wsdm2009.org

Language: English - Date: 2009-04-14 09:41:44
89Machine learning / Learning / Learning to rank / Searching / Link analysis / Ranking SVM / PageRank / Ranking function / Feature selection / Information science / Information retrieval / Statistics

Microsoft Word - LR4IR2009.v4-camera-nomark.doc

Add to Reading List

Source URL: www.thuir.cn

Language: English - Date: 2009-06-27 05:08:51
UPDATE